Wednesday 12 July 2017

Mudança Média Filtro Atraso


A média móvel como um filtro A média móvel é freqüentemente usada para suavizar dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto na verdade é um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro, permitindo compará-lo com, por exemplo, filtros com janelas-sinc (veja os artigos sobre os filtros passa-baixa, alta passagem e banda passada e banda-rejeição para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Dos quais suavizar medições por média é um excelente exemplo. Os filtros Windowed-sinc, por outro lado, são performantes no domínio da frequência. Com equalização no processamento de áudio como um exemplo típico. Existe uma comparação mais detalhada de ambos os tipos de filtros em Time Domain vs. Frequency Domain Performance of Filters. Se você tem dados para os quais tanto o tempo quanto o domínio de freqüência são importantes, então você pode querer examinar as Variações na Média de Movimento. Que apresenta uma série de versões ponderadas da média móvel que são melhores nisso. A média móvel do comprimento (N) pode ser definida como escrita como normalmente é implementada, com a amostra de saída atual como a média das amostras anteriores (N). Visto como um filtro, a média móvel executa uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1 N) (para tornar a área do pulso e, portanto, o ganho do Filtro, um). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel também possa ser calculada usando um número par de amostras, usando um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) As amostras são exatamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais, deslocando-a por um número inteiro de amostras. Domínio do tempo Uma vez que a média móvel é uma convolução com um pulso retangular, sua resposta de freqüência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. Essa é essa resposta de freqüência sincera que torna a média móvel um desempenho pobre no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito suavizar os dados para remover o ruído enquanto, ao mesmo tempo, mantendo uma resposta de passo rápido (Figura 1). Para o típico Black Gaussian Noise (AWGN) que é frequentemente assumido, a média (N) amostras tem o efeito de aumentar o SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há motivo para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, eliminará a quantidade máxima de ruído para uma nitidez de resposta de passo dada. Implementação Por ser um filtro FIR, a média móvel pode ser implementada através da convolução. Em seguida, terá a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado de forma recursiva, de uma forma muito eficiente. Isso segue diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde percebemos que a mudança entre (yn1) e (yn) é que um termo extra (xn1 N) aparece No final, enquanto o termo (xn-N1 N) é removido desde o início. Em aplicações práticas, muitas vezes é possível excluir a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro local. Esta implementação recursiva será muito mais rápida do que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das adições (N) que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar com uma implementação recursiva é que os erros de arredondamento se acumulam. Isso pode ou não ser um problema para a sua aplicação, mas também implica que esta implementação recursiva funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do filtro de média móvel simples em aplicativos de processamento de sinal. Ferramenta de design de filtro Este artigo é complementado com uma ferramenta de design de filtro. Experimente valores diferentes para (N) e visualize os filtros resultantes. Experimente agora o FIR Filter Basics 1.1 O que é quotFIR filtersquot Os filtros FIR são um dos dois principais tipos de filtros digitais utilizados nas aplicações DSP (Digital Signal Processing), sendo o outro tipo IIR. 1.2 O que quotFIRquot significa quotFIRquot significa quotFinite Impulse Responsequot. Se você colocar um impulso, ou seja, uma única amostra de quot1quot seguida de muitas amostras de quot0quot, os zeros sairão depois que a amostra de quot1ch foi feita através da linha de atraso do filtro. 1.3 Por que a resposta ao impulso é quotfinitequot No caso comum, a resposta ao impulso é finita porque não há feedback na FIR. A falta de feedback garante que a resposta ao impulso será finita. Portanto, o termo quotfinite impulso responsequot é quase sinônimo de quotno feedbackquot. No entanto, se o feedback for empregado, a resposta ao impulso é finita, o filtro ainda é uma FIR. Um exemplo é o filtro de média móvel, no qual a Nth amostra anterior é subtraída (alimentada de volta) cada vez que uma nova amostra entra. Esse filtro possui uma resposta de impulso finito mesmo que use feedback: após N amostras de um impulso, a saída Será sempre zero. 1.4 Como faço para quotFIRquot Algumas pessoas dizem que as letras F-I-R outras pessoas pronuntam como se fosse um tipo de árvore. Nós preferimos a árvore. (A diferença é se você fala sobre um filtro F-I-R ou um filtro FIR.) 1.5 Qual é a alternativa aos filtros FIR Os filtros DSP também podem ser QuetInfinite Impulse Responsequot (IIR). (Consulte as Perguntas frequentes sobre dspGurus IIR). Os filtros IIR usam comentários, então, quando você insere um impulso, a saída, teoricamente, soa indefinidamente. 1.6 Como os filtros FIR se comparam aos filtros IIR Cada um tem vantagens e desvantagens. No geral, porém, as vantagens dos filtros FIR superam as desvantagens, de modo que são usadas muito mais do que IIRs. 1.6.1 Quais são as vantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR oferecem as seguintes vantagens: podem ser facilmente concebidos para serem quotlinear phasequot (e geralmente são). Simplificando, os filtros de fase linear atrasam o sinal de entrada, mas donrsquot distorcem sua fase. Eles são simples de implementar. Na maioria dos microprocessadores DSP, o cálculo FIR pode ser feito fazendo uma única instrução. Eles são adequados para aplicações multi-rate. Por taxa múltipla, queremos dizer quotdecimationquot (reduzir a taxa de amostragem), quotinterpolationquot (aumentar a taxa de amostragem), ou ambos. Se diz ou interpola, o uso de filtros FIR permite que alguns dos cálculos sejam omitidos, proporcionando assim uma eficiência computacional importante. Em contraste, se os filtros IIR forem usados, cada saída deve ser calculada individualmente, mesmo que essa saída seja descartada (então o feedback será incorporado no filtro). Eles têm propriedades numéricas desejáveis. Na prática, todos os filtros DSP devem ser implementados usando aritmética de precisão finita, ou seja, um número limitado de bits. O uso de aritmética de precisão finita em filtros IIR pode causar problemas significativos devido ao uso de feedback, mas os filtros FIR sem feedback geralmente podem ser implementados usando menos bits e o designer tem menos problemas práticos para resolver relacionados à aritmética não ideal. Eles podem ser implementados usando aritmética fraccional. Ao contrário dos filtros IIR, sempre é possível implementar um filtro FIR usando coeficientes com uma magnitude inferior a 1,0. (O ganho global do filtro FIR pode ser ajustado na sua saída, se desejado.) Esta é uma consideração importante ao usar DSP de ponto fixo, porque torna a implementação muito mais simples. 1.6.2 Quais são as desvantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR às vezes têm a desvantagem de que eles exigem mais memória e / ou cálculo para alcançar uma determinada característica de resposta do filtro. Além disso, certas respostas não são práticas para serem implementadas com os filtros FIR. 1.7 Quais os termos utilizados para descrever os filtros FIR Resposta de Impulso - A resposta de preço razoável de um filtro FIR é, na verdade, apenas o conjunto de coeficientes de FIR. (Se você colocar um quotimplusequot em um filtro FIR que consiste em uma amostra de quot1quot seguida por muitas amostras de quot0quot, a saída do filtro será o conjunto de coeficientes, pois a 1 amostra se move além de cada coeficiente, para formar a saída.) Tap - Um quottaq de FIR é simplesmente um par de atraso de coeficiente. O número de torneiras FIR (muitas vezes designado como quotNquot) é uma indicação de 1) a quantidade de memória necessária para implementar o filtro, 2) o número de cálculos necessários e 3) a quantidade de quotfilteringquot que o filtro pode efetuar, Mais torneiras significa mais atenuação de parada, menor ondulação, filtros mais estreitos, etc. Multiplica-Accumulate (MAC) - Em um contexto FIR, quotMACquot é a operação de multiplicação de um coeficiente pela amostra de dados atrasada correspondente e acumulando o resultado. As FIR normalmente requerem um MAC por toque. A maioria dos microprocessadores DSP implementam a operação MAC em um único ciclo de instruções. Banda de transição - A faixa de freqüências entre a banda passada e as bordas de banda de parada. Quanto mais estreita a banda de transição, mais torneiras são necessárias para implementar o filtro. (Uma banda de transição quotsmallquot resulta em um filtro quotsharpquot.) Linha de atraso - O conjunto de elementos de memória que implementam os elementos de atraso quotZ-1quot do cálculo do FIR. Buffer circular - Um buffer especial que é quotcircularquot porque o incremento no final faz com que ele envolva ao início, ou porque decrementar desde o início faz com que ele envolva até o final. Os buffers circulares geralmente são fornecidos por microprocessadores DSP para implementar o quotmovementquot das amostras através da linha de atraso FIR sem ter que mover os dados na memória literalmente. Quando uma nova amostra é adicionada ao buffer, ele substitui automaticamente o mais antigo.

No comments:

Post a Comment